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ABSTRACT

Jo-ha w previously proved an implicit-function theorem for regular

be-
solutions of generalized equations. Here we-showSlthat when the underlying set

for the generalized equation is polyhedral, as it is in many applications,

then the implicit function has a Bouligand derivative defined by a formula

generalizing that of the usual implicit-function theorem. This extends recent

results on directional differentiability obtained by Kyparisis and others.
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SIGNIFICANCE AND EXPLANATION

) Generalized equations are mathematical models for nonlinear equilibrium

problems in areas such as economics, transportation, etc. In such models, it

is desirable to know how the solution of the model will change when the

problem data change. When such a change is too hard to compute, a convenient

approximation method may yield an answer that is good enough, particularly for

small changes. This paper develops such an approximation. 4 /1 -
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IMICIT B-DIVMTIABILITY IN GP3RKLIZEO EQUATIONS

Stephen K. Robinson

1. Introduction. This paper deals with solutions of.Weneralized equations of the form

0 f f(p.x) + OO3(x . (1-1)(p)

where f : H xfln *, and 0 are open subsets of anormed linear space P and of

TP respectively, and K is a polyhedral convex set in 1P. The variable p is a

perturbation parameter, for fixed p., (1.1) (p) expresses the geometric requirement that

f(p,x) be an inward normal to K a. x. Generalized equations like (1-1)(p) can be used

to model a wide variety of equilibrium and optimization problems; for discussion and

examples, see the survey in (31.

in (2, 1h. 2.1] we showed that if for a fixed p0 e 11 a solution xO c n of (l.1)(p)

possesses a certain property that we shall call regularity, then for p near po (1.$I)(p)

define, a (locally) single-valued implicit function x(p) having the property that the

pair (p~x(p)) solves (1.1)(p). Further, in (2, Cor. 2.2, Th. 2.3] we showed that under

mild additional assumptions x(-) is Tipachitzian and is closely approximated by the

solution x~p) of the linear generalized equation

0 e f(p,x0 ) + fx(po,xo)Cz-XO) + 3*7 z (1.2)

where fx(po,xo) denotes the partial Prichet derivative with respect to x. All this is

reminiscent of the implicit-function theorem, yet there is one aspect of that theorem that

does not appear in (2]s the fact that if the original function is Frfichet differentiable

then so is the implicit function, and that its derivative may be calculated by implicit

differentiation. The reason this result does not appear in 121 is that it is not true for

generalized equationst one may show easily by examples that even if the solution of

5'; (1-1)(p) is regular it may not be rr6chet differentiable at p0 .

More recently, in a paper primarily concerned with variational problems over pertur 'ed!

sets, Kyparisis used results of (2] to prove that if f is C1 at Cp01x0 ) then the

Sponsored by the National Science Foundation under Grant No. DCR-8502202, and by the United
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solution xD(p) of

0 C f(po,x O) + f'(PoXo) x ) j + a 1(x) 1.3)

approximates x(p) to better than linear order in IpP 0 1 [1, Lea 4.11. He actually

proved this for the case in which 11 C Rk 
and X is a closed convex (not necessarily

polyhedral) set. He then observed that this result implies directional differentiability

of x at Po if xD is directionally differentiable there (1, Cor. 4.2], and he related

this fact to several other papers on variational inequalities and equilibrium problems, see

(1] for references to these papers.

Our aim in this paper is twofold. First, we show that when K is polyhedral x(-)

has a stronger property than directional differentiability: in fact, it has a Bouligand

derivative (B-derivative) at Po The B-derivative was introduced in (5; it has

properties weaker than those of the Fr6chet derivative but stronger than those of

directional derivatives. In particular, B-differentiability implies directional

differentiability in all directions, but it also describes the relationships of the

directional derivatives to each other. Our second aim is to show that this stronger result

holds (again, for polyhedral K) under weaker hypotheses than those used in [1] for

general K.

In the next section we review B-differentiability and show how under some

circumstances a B-derivative can be represented by a sum of partial derivatives. Then in

Section 3 we prove the implicit-function theorem that is our main result.
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2. Review of B-differentiability. Here we review some facts about B-differentiability

that we shall need in Section 3. For proofs, see the appendix in (5].

Given a Lipschitzian function g from an open subset Q of In  to ke, we say

that g has a B-derivative at X0 C Q if there is a (single-valued) function Dg(x 0 )

from VP to IF such that (1) the graph of Dg(x 0 ) is a cone, and (2) one has for x

near x0 ,

g(x) - g(x O) + Dg(xo)(X-XO) + O(X-X O) . (2.1)

Of course, if the graph of Dg(x 0 ) is a subspace then we have the usual notion of Fr~chet

(F-) differentiability, so any F-differentiable function is B-differentiable, although the

converse is of course not true.

In [5] we showed that if (2.1) held at all then it held for just one function DgCxO):

that is, the B-derivative is unique when it exists. We also showed that Dg(x O ) inherits

the Lipschitz modulus of g, that it obeys the usual chain rule, and that a-

differentiation is a linear operation in the space of Lipachitzian functions.

For our work in this paper we need to relate 3-differentiability to partial

differentiation. Of course one can define a partial B-derivative of a function of several

variables: for example, in the case of g(x,y) we would define Dyg(x,y) to be the B-

derivative of the function of y given by g(x,-). However, it should be clear that the

usual formula representing the F-derivative of a function of several variables in terms of

the individual partial derivatives will not work for B-derivatives. For example, consider

the Euclidean norm 1.1 (which is its own B-derivative). Except for one-dimensional

cases, this cannot be represented by sums of the partial B-derivatives of the components.

However, something can be salvaged if some of the components have continuous F-

derivatives instead of just B-derivatives, as the following proposition shows.

PROPOSITION 2.1: Let g be a LTschitzian function from S x T to ak, where S

and T are open sets in ie and iF respectively. Let (xo,y O) r S x T, and suppose

that the partial Fr6chet derivative qx of g with respect to x is continuous at

(oO"Then
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Dg(x01y0 )(v,w) - g,,(x01y0 )v + DYg(xO1y0) (vi (2.2)

Proofs By uniqueness of the U-derivative we nee" only show that the function asn the

right aid* of (2.2) has a cone for its graph, and that it approximates g to better than

first order. The first statement in obvious. For the second, choose e 0 and lot V

(convex) and W be neighborhoods of z0 and yo respectively, so smal that if x e V

and y e then

og(x01y) - g(x0 1 y 0 ) - DA~g(x 0 y0)(y-y 0)l e ly-y01

and for each A e (0,11,

19 x [(1M -z 0 + Ax, Y) - 9g1(x0,y)l C

Then

lg(x,yl - g(x 0 1 yO) - Cj(x1 yO)(x-x0 ) - qxOy)-yI

I g(xO'y) - g(x 0 1y0 ) - Dyg(XOi70 )(y'7 0 )l

+ lg(x'y) - g(X0 ,y) - 9X ("O1YO) (x-x0 ) I

( cy-y 0I + I J1(g [(1-x)x. + Ix,yI - gx(x,y)(x-x)d"l

C (Iy-y 01 + Ix-x 01)

Since z was arbitrary, (2.2) follows Lamidiately. completing the proof.

In applying Proposition 2. 1, a change of coordinates my sometimes be useful. For

example, consider the function g(x,y) - x0y + Ix-yl. It is not hard to see that g does

not have a partial derivative at the origin with respect to either x or y. Rwever, by

introducing the change of variable given by w -x~y and V - x-y one obtains the new

function h(v,v) - g[3. (w~v), - (v-v)J - w + lvI, to which Proposition 2.1 can be applied.

We shall apply Proposition 2. 1 in the next section to separate the differentiability

requirement on f with respect to x from those with respect to p.* We shall se that

although we require CI behavior in x, it suffices for f to have a 5-derivative with

respect to the parameter p. This will enlarge the class of functions to which oar main

theore can be applied.



3. An implicit-function theorem. In this section we review the connection between

regularity and the linearization of (1.1)(Po). We then state and prove the main theorem.

lacall that if x0  solves (1.1)(p 0 ), it is called a regular solution if fx(p0 ,x0 )

exists and if the linear generalized equation

y C f (poxo) fx(p0 ,x0 )(x-x 0 ) + D*K(X) (3.1)

defines a (single-valued) Lipschitzian function x - x(y) from a neighborhood of the

origin to a neighborhood of x0  (see [2] and [31y in (21 this property was called "strong

regularity"). it turns out that we can take advantage of the structure of K near x0 to

simplify (3.1) and to make the property of regularity geometrically clearer.

First, since x0 solves (1.1)(p 0 ) we know that 0 e f( 10,x 0 ) + a#K(x 0 ), and thus the

set KO :- (xCK I <f(p1)0x 0 ), x-x 0> - 0) is a face of K. Since K is polyhedral, for

any h near f(p 0 ,x 0 ) the set of points x satisfying 0 c h + 3*K(x) and that

satisfying 0 e h + 
3
#K 0(x) are the same (4, Leman 3.5]. But, again by polyhedrality,

near x0 the face K0  coincides with x0 + T, where T is the tangent cone to K0 at

x 0 . Therefore, for h near f(p 0 ,x 0 ) and v near the origin, we have -h C 
3 *K(x0 + v)

if and only if -h e D*T(v). With these observations, we can use the following proposition

to reduce the question of regularity to one of unique solvability for a simpler generalized

equation.

PROPOSITION 3.1: Suppose x0 solves (1. 1)(p 0 ) and fx(p 0,x0 ) exists. Then x io s

a regular solution if and only if the generalized equation

y C f x(P0,x0 )v + 
3
*T(v) (3.2)

has a unique solution v - v(y) for each y e F
. 

Further, if this is so then v is

Lipschitzian, and for each y near 0 the solutions x(y) and v(y) of (3.1) and (3.2)

respectively satisfy x(y) - x0 + v(y).

Proof We first show that for y near 0 and x near x0, and with v - x-x ,

the pair (y,x) satisfies (3.1) if and only if the pair (y,v) satisfies (3.2). if

(y,v) is near (0,0) and satisfies (3.2), then v c T. However, by construction

f(p0 ,x0) is orthogonal to each element of T, and thus (3.2) is equivalent to

-5-



y C f(Po,Xo) + fx(PO,XO)V + (v) • (3.3)

for x near x0 we know 3*0(x) = *T(x-x0), so we can revrite (3.3) with v = x-x 0  as

y e f(p 0 ,x 0 ) + fx(Po,xo)(x-xO) + #0 W (3.4)

Further, since y is also near the origin the quantity -y + f(p0 ,x0 ) + fx(poxo)(x-xe)

is close to f(pgx 0 ). But then by (4, Iamma 3.5] the relation (3.4) holds if and only if

the same relation holds with K in place of K0. i.e., if and only if we have (3.1).

Conversely, if (y,x) is near (Ox O ) and satisfies (3.1), then we know x e KI

as y is near 0 and x is near x0 we can reverse the previous argument to obtain

(3.4) and then (3.3). This tells us that v - x-x 0  must belong to T, and we can then

follow the same argument back to obtain (3.2).

Now suppose that (3.2) has a unique solution v(y) for each y e Yn . The function

v(y) is polyhedral, hence everywhere locally upper Lipschitzian with some constant modulus

(6, Prop. 1]. But by hypothesis v is single-valued, and it is easy to show that it is

then actually Lipschitzian with the same modulus. It follows that, since (0,0) satisfies

(3.2), if y is any point near 0 then v(y) is also mall, and hence x - x0+v(y) is

near x0. By our previous argument the pair (x,y) satisfies (3.1). If x' is near K0

and (y,x') satisfies (3.1), then again we apply the previous argument to conclude that

(y,x'-x0 ) satisfies (3.2). By uniqueness of v, we then have x'-x0 - x-x0 , so that

x is locally unique as a solution of (3. 1). But x inherits the Lipschitz modulus of vg

hence x0 is a regular solution of (1.1)(po).

Finally, suppose x0  is a regular solution of (1.1)(p0). Let y e I, and let

a > 0 be such that my is close enough to 0 for the definition of regularity to yield a

locally unique x near x0 with (ay,x) satisfying (3.1). Since regularity requires

that x be Lipschitzian, we can suppose a is so small that the pair (ay,x) is close

enough to (0,x 0 ) for our previous argument to apply. That argument shows that if we

define v by av - x-x 0 , then (ay,av) satisfies (3.2). However, since T is a cone

the pair (y,v) then also satisfies (3.2). If v' is such that (y,v') satisfies (3.2),

then for small positive B the pairs (ByBv) and (By,Bv') both satisfy (3.2) and are

close to (0,0). Ltting x = x0 +Bv and x' - xO+Bv', we apply the previous argument to

-6-



show that (By,x) and (By,x') each satisfy (3.1). But by the local uniqueness

reguirement of the regularity assumption, we have x - x'; thus v - v' and the solution

of (3.2) is globally unique. This proves Proposition 3.1.

We are now ready to prove the main result, which says that the solution of (3.2) for a

special choice of y yields the B-derivative of x(-) at Po" For completeness we

include in the statement of the theorem some results from (2], establishing existence and

Lipschitz continuity of the implicit function defined by (.11)(p), but the result on B-

differentiability is our main object here.

THEOREM 3.2: Let f be a Lipschitzian function from I x n + IF. Suppose that:

a. The partial F-derivative f, exists on n and is continuous at (P0,X0),

and

b. x0  is a regular solution of (1.1)(p 0 ).

Then there are neighborhoods x of x0  an p of Po' and a Lipschitzian

function x : N p , such that for each p c Hp, Ytp) is the unique solution in Nx oME.

(1.1)(p). Furt'.er, the B-derivative of x at Po is given by DK(p 0 )(w) - vL,

where vL - VL(W) is the unique solution of the linear .eneralized equation

0 C fx(POX0)VL + Dpf(p0 ,x0 )(w) + 
3 %T(vL,  1 (3.5)

Proof: The conclusion about x(o), except for the B-derivative, Zollows from [2, Th.

2.1, Cor. 2.2]. Since x is Lipschitzian on Nx ,  [5, Ih. A.2] applies to show that it

will be B-differentiable at Po with B-derivative vL(w) given by (3.5) provided we can

show that vL(O) is a single-valued function whose graph is a cone and that for w near

0, x(P0+w) = xO+vL(W)+O(w). The single-valuedness follows Zrom our comments on (3.2),

since (3.5) is nothing but (3.2) with y - -Dpf(Pj,xo)(w). Also, since Dpf(POxo)(.) is

positively homogeneous and since T is a cone, the graph of vL(*) is a cone. Therefore

we have only to establish the approximation property.

Recall that for p near PO we haveI 0 C f(p,x(p)) + ahK(x(p)) • (3.6)

-7-
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As x(p) remains near xO, by reasoning as in the proof of Proposition 3. 1 we can show

that (3.6) is equivalent to

0 C f(p04w. X0+,(W)) + 3*..(v(W)) ,(3.7)

where w - p-p0  and v(w) - x(p04w) - x0. This in turn can be rewritten as

-f~p,4w,+V(w)) + fx(PO'XOJv~~wI C fx(POuxO)V(w) + 341T(v(w)) (3.8)

we can also rewrite (3.5), recalling that f(pOxO) is orthogonal to each element of T,

to obtain

-f(P01X0 ) - Dpf(P01X0 )(v) C xP'OV + a*(L 39

Using the Lipschitz property of (3.2) and writing A for the modulus, we find from (3.8)

and (3.9) that

Iv(w)-v L v)I j Xlf(pO+W,X0 +v(w)) - f(p01X0 )

f- f(Po,xo)v(w) - D Pf(p01x0 )(v)E

VW

where we have used Proposition 2.1. However, since x(.) is Lipschitzian in p, v(*) is

Lipschitzian in w. It follows that Ev(w) -vL(w)E o(w), which completes the proof of

Theorem 3. 2.

-8-
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